0=-16x^2+1000

Simple and best practice solution for 0=-16x^2+1000 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16x^2+1000 equation:



0=-16x^2+1000
We move all terms to the left:
0-(-16x^2+1000)=0
We add all the numbers together, and all the variables
-(-16x^2+1000)=0
We get rid of parentheses
16x^2-1000=0
a = 16; b = 0; c = -1000;
Δ = b2-4ac
Δ = 02-4·16·(-1000)
Δ = 64000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{64000}=\sqrt{6400*10}=\sqrt{6400}*\sqrt{10}=80\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80\sqrt{10}}{2*16}=\frac{0-80\sqrt{10}}{32} =-\frac{80\sqrt{10}}{32} =-\frac{5\sqrt{10}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80\sqrt{10}}{2*16}=\frac{0+80\sqrt{10}}{32} =\frac{80\sqrt{10}}{32} =\frac{5\sqrt{10}}{2} $

See similar equations:

| 17=r/2+11 | | f+-1=-10 | | 13-d=6 | | b/45+9=24 | | 2(4s+3)=102 | | 4n-9=43 | | g+-7=-5 | | 9+10x=-9 | | 7-w=8 | | j+3=8 | | 105+14m=329 | | x2-16x+5=0 | | -5-u=4 | | 2/3x-5=3/4 | | m+-5=-12 | | 1=u/3-2 | | -15-r=-6 | | x+3/7=5 | | (u-4)*8=32 | | 3^0.7x=695 | | 2+3x=3+4x | | 8(t-7)=24 | | 5(2x-1)—9x=3-x | | 5(1)-y=9 | | 0,25=0,595*d | | 14=a-6.5 | | -1x^2-11x+4=0 | | 2-j=-6 | | 2/5x-9=7-1/3x | | l+8=2 | | 5=7n-9 | | 6t−18=24 |

Equations solver categories